Score: 0

EEG Emotion Recognition Through Deep Learning

Published: November 19, 2025 | arXiv ID: 2511.15902v1

By: Roman Dolgopolyi, Antonis Chatzipanagiotou

Potential Business Impact:

Reads your feelings from brain waves.

Business Areas:
Image Recognition Data and Analytics, Software

An advanced emotion classification model was developed using a CNN-Transformer architecture for emotion recognition from EEG brain wave signals, effectively distinguishing among three emotional states, positive, neutral and negative. The model achieved a testing accuracy of 91%, outperforming traditional models such as SVM, DNN, and Logistic Regression. Training was conducted on a custom dataset created by merging data from SEED, SEED-FRA, and SEED-GER repositories, comprising 1,455 samples with EEG recordings labeled according to emotional states. The combined dataset represents one of the largest and most culturally diverse collections available. Additionally, the model allows for the reduction of the requirements of the EEG apparatus, by leveraging only 5 electrodes of the 62. This reduction demonstrates the feasibility of deploying a more affordable consumer-grade EEG headset, thereby enabling accessible, at-home use, while also requiring less computational power. This advancement sets the groundwork for future exploration into mood changes induced by media content consumption, an area that remains underresearched. Integration into medical, wellness, and home-health platforms could enable continuous, passive emotional monitoring, particularly beneficial in clinical or caregiving settings where traditional behavioral cues, such as facial expressions or vocal tone, are diminished, restricted, or difficult to interpret, thus potentially transforming mental health diagnostics and interventions...

Page Count
18 pages

Category
Electrical Engineering and Systems Science:
Signal Processing