Score: 3

Boosting Medical Visual Understanding From Multi-Granular Language Learning

Published: November 20, 2025 | arXiv ID: 2511.15943v1

By: Zihan Li , Yiqing Wang , Sina Farsiu and more

Potential Business Impact:

Helps doctors understand many medical images better.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

Recent advances in image-text pretraining have significantly enhanced visual understanding by aligning visual and textual representations. Contrastive Language-Image Pretraining (CLIP) has played a pivotal role in multimodal learning. However, its focus on single-label, single-granularity alignment limits its effectiveness in complex domains such as medical imaging, where images often correspond to multiple high-level labels (e.g., disease categories) across different annotation granularities (e.g., diagnostic description, clinical explanation). To address this, we propose Multi-Granular Language Learning (MGLL), a contrastive learning framework designed to improve both multi-label and cross-granularity alignment. MGLL leverages structured multi-label supervision, integrates textual descriptions across granularities, and introduces soft-label supervision with point-wise constraints to enhance alignment. MGLL employs smooth Kullback-Leibler (KL) divergence to ensure cross-granularity consistency while maintaining computational efficiency as a plug-and-play module for vision-language models. Pretrained on our constructed large-scale multi-granular datasets and evaluated across multiple datasets, MGLL outperforms other state-of-the-art methods in downstream tasks. The code is available at \href{https://github.com/HUANGLIZI/MGLL}{https://github.com/HUANGLIZI/MGLL}.


Page Count
40 pages

Category
Computer Science:
CV and Pattern Recognition