Score: 0

Green Distributed AI Training: Orchestrating Compute Across Renewable-Powered Micro Datacenters

Published: November 20, 2025 | arXiv ID: 2511.16182v1

By: Giuseppe Tomei , Andrea Mayer , Giuseppe Alcini and more

Potential Business Impact:

Moves computer work to clean energy when available.

Business Areas:
Cloud Computing Internet Services, Software

The accelerating expansion of AI workloads is colliding with an energy landscape increasingly dominated by intermittent renewable generation. While vast quantities of zero-carbon energy are routinely curtailed, today's centralized datacenter architectures remain poorly matched to this reality in both energy proportionality and geographic flexibility. This work envisions a shift toward a distributed fabric of renewable-powered micro-datacenters that dynamically follow the availability of surplus green energy through live workload migration. At the core of this vision lies a formal feasibility-domain model that delineates when migratory AI computation is practically achievable. By explicitly linking checkpoint size, wide-area bandwidth, and renewable-window duration, the model reveals that migration is almost always energetically justified, and that time-not energy-is the dominant constraint shaping feasibility. This insight enables the design of a feasibility-aware orchestration framework that transforms migration from a best-effort heuristic into a principled control mechanism. Trace-driven evaluation shows that such orchestration can simultaneously reduce non-renewable energy use and improve performance stability, overcoming the tradeoffs of purely energy-driven strategies. Beyond the immediate feasibility analysis, the extended version explores the architectural horizon of renewable-aware AI infrastructures. It examines the role of emerging ultra-efficient GPU-enabled edge platforms, anticipates integration with grid-level control and demand-response ecosystems, and outlines paths toward supporting partially migratable and distributed workloads. The work positions feasibility-aware migration as a foundational building block for a future computing paradigm in which AI execution becomes fluid, geographically adaptive, and aligned with renewable energy availability.

Page Count
13 pages

Category
Computer Science:
Networking and Internet Architecture