Beyond Generative AI: World Models for Clinical Prediction, Counterfactuals, and Planning
By: Mohammad Areeb Qazi, Maryam Nadeem, Mohammad Yaqub
Potential Business Impact:
Helps doctors predict patient health and plan treatments.
Healthcare requires AI that is predictive, reliable, and data-efficient. However, recent generative models lack physical foundation and temporal reasoning required for clinical decision support. As scaling language models show diminishing returns for grounded clinical reasoning, world models are gaining traction because they learn multimodal, temporally coherent, and action-conditioned representations that reflect the physical and causal structure of care. This paper reviews World Models for healthcare systems that learn predictive dynamics to enable multistep rollouts, counterfactual evaluation and planning. We survey recent work across three domains: (i) medical imaging and diagnostics (e.g., longitudinal tumor simulation, projection-transition modeling, and Joint Embedding Predictive Architecture i.e., JEPA-style predictive representation learning), (ii) disease progression modeling from electronic health records (generative event forecasting at scale), and (iii) robotic surgery and surgical planning (action-conditioned guidance and control). We also introduce a capability rubric: L1 temporal prediction, L2 action-conditioned prediction, L3 counterfactual rollouts for decision support, and L4 planning/control. Most reviewed systems achieve L1--L2, with fewer instances of L3 and rare L4. We identify cross-cutting gaps that limit clinical reliability; under-specified action spaces and safety constraints, weak interventional validation, incomplete multimodal state construction, and limited trajectory-level uncertainty calibration. This review outlines a research agenda for clinically robust prediction-first world models that integrate generative backbones (transformers, diffusion, VAE) with causal/mechanical foundation for safe decision support in healthcare.
Similar Papers
A Comprehensive Survey on World Models for Embodied AI
CV and Pattern Recognition
Helps robots learn to predict and act.
The Safety Challenge of World Models for Embodied AI Agents: A Review
Artificial Intelligence
Makes robots predict and act safely.
World Models for Cognitive Agents: Transforming Edge Intelligence in Future Networks
Artificial Intelligence
Helps robots learn faster in new places.