Score: 1

Graph Neural Networks for Surgical Scene Segmentation

Published: November 20, 2025 | arXiv ID: 2511.16430v1

By: Yihan Li , Nikhil Churamani , Maria Robu and more

Potential Business Impact:

Helps surgeons see hidden body parts during operations.

Business Areas:
Image Recognition Data and Analytics, Software

Purpose: Accurate identification of hepatocystic anatomy is critical to preventing surgical complications during laparoscopic cholecystectomy. Deep learning models often struggle with occlusions, long-range dependencies, and capturing the fine-scale geometry of rare structures. This work addresses these challenges by introducing graph-based segmentation approaches that enhance spatial and semantic understanding in surgical scene analyses. Methods: We propose two segmentation models integrating Vision Transformer (ViT) feature encoders with Graph Neural Networks (GNNs) to explicitly model spatial relationships between anatomical regions. (1) A static k Nearest Neighbours (k-NN) graph with a Graph Convolutional Network with Initial Residual and Identity Mapping (GCNII) enables stable long-range information propagation. (2) A dynamic Differentiable Graph Generator (DGG) with a Graph Attention Network (GAT) supports adaptive topology learning. Both models are evaluated on the Endoscapes-Seg50 and CholecSeg8k benchmarks. Results: The proposed approaches achieve up to 7-8% improvement in Mean Intersection over Union (mIoU) and 6% improvement in Mean Dice (mDice) scores over state-of-the-art baselines. It produces anatomically coherent predictions, particularly on thin, rare and safety-critical structures. Conclusion: The proposed graph-based segmentation methods enhance both performance and anatomical consistency in surgical scene segmentation. By combining ViT-based global context with graph-based relational reasoning, the models improve interpretability and reliability, paving the way for safer laparoscopic and robot-assisted surgery through a precise identification of critical anatomical features.

Page Count
12 pages

Category
Computer Science:
CV and Pattern Recognition