Score: 1

StreetView-Waste: A Multi-Task Dataset for Urban Waste Management

Published: November 20, 2025 | arXiv ID: 2511.16440v1

By: Diogo J. Paulo , João Martins , Hugo Proença and more

Potential Business Impact:

Helps garbage trucks spot overflowing trash cans.

Business Areas:
Waste Management Sustainability

Urban waste management remains a critical challenge for the development of smart cities. Despite the growing number of litter detection datasets, the problem of monitoring overflowing waste containers, particularly from images captured by garbage trucks, has received little attention. While existing datasets are valuable, they often lack annotations for specific container tracking or are captured in static, decontextualized environments, limiting their utility for real-world logistics. To address this gap, we present StreetView-Waste, a comprehensive dataset of urban scenes featuring litter and waste containers. The dataset supports three key evaluation tasks: (1) waste container detection, (2) waste container tracking, and (3) waste overflow segmentation. Alongside the dataset, we provide baselines for each task by benchmarking state-of-the-art models in object detection, tracking, and segmentation. Additionally, we enhance baseline performance by proposing two complementary strategies: a heuristic-based method for improved waste container tracking and a model-agnostic framework that leverages geometric priors to refine litter segmentation. Our experimental results show that while fine-tuned object detectors achieve reasonable performance in detecting waste containers, baseline tracking methods struggle to accurately estimate their number; however, our proposed heuristics reduce the mean absolute counting error by 79.6%. Similarly, while segmenting amorphous litter is challenging, our geometry-aware strategy improves segmentation mAP@0.5 by 27% on lightweight models, demonstrating the value of multimodal inputs for this task. Ultimately, StreetView-Waste provides a challenging benchmark to encourage research into real-world perception systems for urban waste management.

Country of Origin
🇵🇹 Portugal

Page Count
11 pages

Category
Computer Science:
CV and Pattern Recognition