Score: 0

Cross-cultural value alignment frameworks for responsible AI governance: Evidence from China-West comparative analysis

Published: November 21, 2025 | arXiv ID: 2511.17256v1

By: Haijiang Liu , Jinguang Gu , Xun Wu and more

Potential Business Impact:

Checks if AI understands different cultures fairly.

Business Areas:
Natural Language Processing Artificial Intelligence, Data and Analytics, Software

As Large Language Models (LLMs) increasingly influence high-stakes decision-making across global contexts, ensuring their alignment with diverse cultural values has become a critical governance challenge. This study presents a Multi-Layered Auditing Platform for Responsible AI that systematically evaluates cross-cultural value alignment in China-origin and Western-origin LLMs through four integrated methodologies: Ethical Dilemma Corpus for assessing temporal stability, Diversity-Enhanced Framework (DEF) for quantifying cultural fidelity, First-Token Probability Alignment for distributional accuracy, and Multi-stAge Reasoning frameworK (MARK) for interpretable decision-making. Our comparative analysis of 20+ leading models, such as Qwen, GPT-4o, Claude, LLaMA, and DeepSeek, reveals universal challenges-fundamental instability in value systems, systematic under-representation of younger demographics, and non-linear relationships between model scale and alignment quality-alongside divergent regional development trajectories. While China-origin models increasingly emphasize multilingual data integration for context-specific optimization, Western models demonstrate greater architectural experimentation but persistent U.S.-centric biases. Neither paradigm achieves robust cross-cultural generalization. We establish that Mistral-series architectures significantly outperform LLaMA3-series in cross-cultural alignment, and that Full-Parameter Fine-Tuning on diverse datasets surpasses Reinforcement Learning from Human Feedback in preserving cultural variation...

Country of Origin
🇩🇰 Denmark

Page Count
30 pages

Category
Computer Science:
Computers and Society