Score: 1

MMT-ARD: Multimodal Multi-Teacher Adversarial Distillation for Robust Vision-Language Models

Published: November 21, 2025 | arXiv ID: 2511.17448v1

By: Yuqi Li , Junhao Dong , Chuanguang Yang and more

Potential Business Impact:

Makes AI safer from tricky fake images.

Business Areas:
Autonomous Vehicles Transportation

Vision-Language Models (VLMs) are increasingly deployed in safety-critical applications, making their adversarial robustness a crucial concern. While adversarial knowledge distillation has shown promise in transferring robustness from teacher to student models, traditional single-teacher approaches suffer from limited knowledge diversity, slow convergence, and difficulty in balancing robustness and accuracy. To address these challenges, we propose MMT-ARD: a Multimodal Multi-Teacher Adversarial Robust Distillation framework. Our key innovation is a dual-teacher knowledge fusion architecture that collaboratively optimizes clean feature preservation and robust feature enhancement. To better handle challenging adversarial examples, we introduce a dynamic weight allocation strategy based on teacher confidence, enabling adaptive focus on harder samples. Moreover, to mitigate bias among teachers, we design an adaptive sigmoid-based weighting function that balances the strength of knowledge transfer across modalities. Extensive experiments on ImageNet and zero-shot benchmarks demonstrate that MMT-ARD improves robust accuracy by +4.32% and zero-shot accuracy by +3.5% on the ViT-B-32 model, while achieving a 2.3x increase in training efficiency over traditional single-teacher methods. These results highlight the effectiveness and scalability of MMT-ARD in enhancing the adversarial robustness of multimodal large models. Our codes are available at https://github.com/itsnotacie/MMT-ARD.

Repos / Data Links

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition