Score: 2

Cost-Sensitive Conformal Training with Provably Controllable Learning Bounds

Published: November 22, 2025 | arXiv ID: 2511.17861v1

By: Xuesong Jia , Yuanjie Shi , Ziquan Liu and more

Potential Business Impact:

Makes AI predictions more accurate and reliable.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Conformal prediction (CP) is a general framework to quantify the predictive uncertainty of machine learning models that uses a set prediction to include the true label with a valid probability. To align the uncertainty measured by CP, conformal training methods minimize the size of the prediction sets. A typical way is to use a surrogate indicator function, usually Sigmoid or Gaussian error function. However, these surrogate functions do not have a uniform error bound to the indicator function, leading to uncontrollable learning bounds. In this paper, we propose a simple cost-sensitive conformal training algorithm that does not rely on the indicator approximation mechanism. Specifically, we theoretically show that minimizing the expected size of prediction sets is upper bounded by the expected rank of true labels. To this end, we develop a rank weighting strategy that assigns the weight using the rank of true label on each data sample. Our analysis provably demonstrates the tightness between the proposed weighted objective and the expected size of conformal prediction sets. Extensive experiments verify the validity of our theoretical insights, and superior empirical performance over other conformal training in terms of predictive efficiency with 21.38% reduction for average prediction set size.

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΊπŸ‡Έ China, United States

Repos / Data Links

Page Count
21 pages

Category
Computer Science:
Machine Learning (CS)