A multi-view contrastive learning framework for spatial embeddings in risk modelling
By: Freek Holvoet, Christopher Blier-Wong, Katrien Antonio
Potential Business Impact:
Makes house price predictions better using location.
Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.
Similar Papers
SpatialGeo:Boosting Spatial Reasoning in Multimodal LLMs via Geometry-Semantics Fusion
CV and Pattern Recognition
Helps computers understand 3D shapes and where things are.
Learning Multimodal Embeddings for Traffic Accident Prediction and Causal Estimation
Machine Learning (CS)
Predicts car crashes using road and sky pictures.
Unsupervised Multimodal Graph-based Model for Geo-social Analysis
Social and Information Networks
Finds important news in social media posts.