Score: 0

Accelerated optimization of measured relative entropies

Published: November 22, 2025 | arXiv ID: 2511.17976v1

By: Zixin Huang, Mark M. Wilde

Potential Business Impact:

Makes quantum computers calculate faster and use less memory.

Business Areas:
Quantum Computing Science and Engineering

The measured relative entropy and measured Rényi relative entropy are quantifiers of the distinguishability of two quantum states $ρ$ and $σ$. They are defined as the maximum classical relative entropy or Rényi relative entropy realizable by performing a measurement on $ρ$ and $σ$, and they have interpretations in terms of asymptotic quantum hypothesis testing. Crucially, they can be rewritten in terms of variational formulas involving the optimization of a concave or convex objective function over the set of positive definite operators. In this paper, we establish foundational properties of these objective functions by analyzing their matrix gradients and Hessian superoperators; namely, we prove that these objective functions are $β$-smooth and $γ$-strongly convex / concave, where $β$ and $γ$ depend on the max-relative entropies of $ρ$ and $σ$. A practical consequence of these properties is that we can conduct Nesterov accelerated projected gradient descent / ascent, a well known classical optimization technique, to calculate the measured relative entropy and measured Rényi relative entropy to arbitrary precision. These algorithms are generally more memory efficient than our previous algorithms based on semi-definite optimization [Huang and Wilde, arXiv:2406.19060], and for well conditioned states $ρ$ and $σ$, these algorithms are notably faster.

Page Count
39 pages

Category
Physics:
Quantum Physics