Score: 0

Unified Deep Learning Platform for Dust and Fault Diagnosis in Solar Panels Using Thermal and Visual Imaging

Published: November 23, 2025 | arXiv ID: 2511.18514v1

By: Abishek Karthik, Sreya Mynampati, Pandiyaraju V

Potential Business Impact:

Finds dirt and broken parts on solar panels.

Business Areas:
Image Recognition Data and Analytics, Software

Solar energy is one of the most abundant and tapped sources of renewable energies with enormous future potential. Solar panel output can vary widely with factors like intensity, temperature, dirt, debris and so on affecting it. We have implemented a model on detecting dust and fault on solar panels. These two applications are centralized as a single-platform and can be utilized for routine-maintenance and any other checks. These are checked against various parameters such as power output, sinusoidal wave (I-V component of solar cell), voltage across each solar cell and others. Firstly, we filter and preprocess the obtained images using gamma removal and Gaussian filtering methods alongside some predefined processes like normalization. The first application is to detect whether a solar cell is dusty or not based on various pre-determined metrics like shadowing, leaf, droppings, air pollution and from other human activities to extent of fine-granular solar modules. The other one is detecting faults and other such occurrences on solar panels like faults, cracks, cell malfunction using thermal imaging application. This centralized platform can be vital since solar panels have different efficiency across different geography (air and heat affect) and can also be utilized for small-scale house requirements to large-scale solar farm sustentation effectively. It incorporates CNN, ResNet models that with self-attention mechanisms-KerNet model which are used for classification and results in a fine-tuned system that detects dust or any fault occurring. Thus, this multi-application model proves to be efficient and optimized in detecting dust and faults on solar panels. We have performed various comparisons and findings that demonstrates that our model has better efficiency and accuracy results overall than existing models.

Page Count
15 pages

Category
Computer Science:
CV and Pattern Recognition