Score: 1

Any4D: Open-Prompt 4D Generation from Natural Language and Images

Published: November 24, 2025 | arXiv ID: 2511.18746v1

By: Hao Li, Qiao Sun

Potential Business Impact:

Teaches robots to learn actions faster and better.

Business Areas:
Virtual World Community and Lifestyle, Media and Entertainment, Software

While video-generation-based embodied world models have gained increasing attention, their reliance on large-scale embodied interaction data remains a key bottleneck. The scarcity, difficulty of collection, and high dimensionality of embodied data fundamentally limit the alignment granularity between language and actions and exacerbate the challenge of long-horizon video generation--hindering generative models from achieving a \textit{"GPT moment"} in the embodied domain. There is a naive observation: \textit{the diversity of embodied data far exceeds the relatively small space of possible primitive motions}. Based on this insight, we propose \textbf{Primitive Embodied World Models} (PEWM), which restricts video generation to fixed shorter horizons, our approach \textit{1) enables} fine-grained alignment between linguistic concepts and visual representations of robotic actions, \textit{2) reduces} learning complexity, \textit{3) improves} data efficiency in embodied data collection, and \textit{4) decreases} inference latency. By equipping with a modular Vision-Language Model (VLM) planner and a Start-Goal heatmap Guidance mechanism (SGG), PEWM further enables flexible closed-loop control and supports compositional generalization of primitive-level policies over extended, complex tasks. Our framework leverages the spatiotemporal vision priors in video models and the semantic awareness of VLMs to bridge the gap between fine-grained physical interaction and high-level reasoning, paving the way toward scalable, interpretable, and general-purpose embodied intelligence.

Country of Origin
🇨🇳 China

Page Count
17 pages

Category
Computer Science:
CV and Pattern Recognition