Score: 2

TPG-INR: Target Prior-Guided Implicit 3D CT Reconstruction for Enhanced Sparse-view Imaging

Published: November 24, 2025 | arXiv ID: 2511.18806v1

By: Qinglei Cao, Ziyao Tang, Xiaoqin Tang

Potential Business Impact:

Builds better 3D body scans from fewer X-rays.

Business Areas:
Image Recognition Data and Analytics, Software

X-ray imaging, based on penetration, enables detailed visualization of internal structures. Building on this capability, existing implicit 3D reconstruction methods have adapted the NeRF model and its variants for internal CT reconstruction. However, these approaches often neglect the significance of objects' anatomical priors for implicit learning, limiting both reconstruction precision and learning efficiency, particularly in ultra-sparse view scenarios. To address these challenges, we propose a novel 3D CT reconstruction framework that employs a 'target prior' derived from the object's projection data to enhance implicit learning. Our approach integrates positional and structural encoding to facilitate voxel-wise implicit reconstruction, utilizing the target prior to guide voxel sampling and enrich structural encoding. This dual strategy significantly boosts both learning efficiency and reconstruction quality. Additionally, we introduce a CUDA-based algorithm for rapid estimation of high-quality 3D target priors from sparse-view projections. Experiments utilizing projection data from a complex abdominal dataset demonstrate that the proposed model substantially enhances learning efficiency, outperforming the current leading model, NAF, by a factor of ten. In terms of reconstruction quality, it also exceeds the most accurate model, NeRP, achieving PSNR improvements of 3.57 dB, 5.42 dB, and 5.70 dB with 10, 20, and 30 projections, respectively. The code is available at https://github.com/qlcao171/TPG-INR.

Repos / Data Links

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition