Score: 2

AuViRe: Audio-visual Speech Representation Reconstruction for Deepfake Temporal Localization

Published: November 24, 2025 | arXiv ID: 2511.18993v1

By: Christos Koutlis, Symeon Papadopoulos

Potential Business Impact:

Finds fake videos by checking if sound and lips match.

Business Areas:
Augmented Reality Hardware, Software

With the rapid advancement of sophisticated synthetic audio-visual content, e.g., for subtle malicious manipulations, ensuring the integrity of digital media has become paramount. This work presents a novel approach to temporal localization of deepfakes by leveraging Audio-Visual Speech Representation Reconstruction (AuViRe). Specifically, our approach reconstructs speech representations from one modality (e.g., lip movements) based on the other (e.g., audio waveform). Cross-modal reconstruction is significantly more challenging in manipulated video segments, leading to amplified discrepancies, thereby providing robust discriminative cues for precise temporal forgery localization. AuViRe outperforms the state of the art by +8.9 AP@0.95 on LAV-DF, +9.6 AP@0.5 on AV-Deepfake1M, and +5.1 AUC on an in-the-wild experiment. Code available at https://github.com/mever-team/auvire.

Repos / Data Links

Page Count
15 pages

Category
Computer Science:
CV and Pattern Recognition