Score: 2

3M-TI: High-Quality Mobile Thermal Imaging via Calibration-free Multi-Camera Cross-Modal Diffusion

Published: November 24, 2025 | arXiv ID: 2511.19117v1

By: Minchong Chen , Xiaoyun Yuan , Junzhe Wan and more

Potential Business Impact:

Makes phone cameras see heat better, clearer.

Business Areas:
Image Recognition Data and Analytics, Software

The miniaturization of thermal sensors for mobile platforms inherently limits their spatial resolution and textural fidelity, leading to blurry and less informative images. Existing thermal super-resolution (SR) methods can be grouped into single-image and RGB-guided approaches: the former struggles to recover fine structures from limited information, while the latter relies on accurate and laborious cross-camera calibration, which hinders practical deployment and robustness. Here, we propose 3M-TI, a calibration-free Multi-camera cross-Modality diffusion framework for Mobile Thermal Imaging. At its core, 3M-TI integrates a cross-modal self-attention module (CSM) into the diffusion UNet, replacing the original self-attention layers to adaptively align thermal and RGB features throughout the denoising process, without requiring explicit camera calibration. This design enables the diffusion network to leverage its generative prior to enhance spatial resolution, structural fidelity, and texture detail in the super-resolved thermal images. Extensive evaluations on real-world mobile thermal cameras and public benchmarks validate our superior performance, achieving state-of-the-art results in both visual quality and quantitative metrics. More importantly, the thermal images enhanced by 3M-TI lead to substantial gains in critical downstream tasks like object detection and segmentation, underscoring its practical value for robust mobile thermal perception systems. More materials: https://github.com/work-submit/3MTI.

Repos / Data Links

Page Count
11 pages

Category
Computer Science:
CV and Pattern Recognition