MonoMSK: Monocular 3D Musculoskeletal Dynamics Estimation
By: Farnoosh Koleini , Hongfei Xue , Ahmed Helmy and more
Potential Business Impact:
Makes videos show real body movements and forces.
Reconstructing biomechanically realistic 3D human motion - recovering both kinematics (motion) and kinetics (forces) - is a critical challenge. While marker-based systems are lab-bound and slow, popular monocular methods use oversimplified, anatomically inaccurate models (e.g., SMPL) and ignore physics, fundamentally limiting their biomechanical fidelity. In this work, we introduce MonoMSK, a hybrid framework that bridges data-driven learning and physics-based simulation for biomechanically realistic 3D human motion estimation from monocular video. MonoMSK jointly recovers both kinematics (motions) and kinetics (forces and torques) through an anatomically accurate musculoskeletal model. By integrating transformer-based inverse dynamics with differentiable forward kinematics and dynamics layers governed by ODE-based simulation, MonoMSK establishes a physics-regulated inverse-forward loop that enforces biomechanical causality and physical plausibility. A novel forward-inverse consistency loss further aligns motion reconstruction with the underlying kinetic reasoning. Experiments on BML-MoVi, BEDLAM, and OpenCap show that MonoMSK significantly outperforms state-of-the-art methods in kinematic accuracy, while for the first time enabling precise monocular kinetics estimation.
Similar Papers
Physics Informed Human Posture Estimation Based on 3D Landmarks from Monocular RGB-Videos
CV and Pattern Recognition
Makes exercise apps understand your body better.
Paving the Way Towards Kinematic Assessment Using Monocular Video: A Preclinical Benchmark of State-of-the-Art Deep-Learning-Based 3D Human Pose Estimators Against Inertial Sensors in Daily Living Activities
CV and Pattern Recognition
Lets cameras track body movements like doctors do.
Metric, inertially aligned monocular state estimation via kinetodynamic priors
Robotics
Robots bend and move without breaking.