Score: 0

Multi-Agent gatekeeper: Safe Flight Planning and Formation Control for Urban Air Mobility

Published: November 24, 2025 | arXiv ID: 2511.19691v1

By: Thomas Marshall Vielmetti, Devansh R Agrawal, Dimitra Panagou

Potential Business Impact:

Keeps robots from crashing in crowded spaces.

Business Areas:
Drone Management Hardware, Software

We present Multi-Agent gatekeeper, a framework that provides provable safety guarantees for leader-follower formation control in cluttered 3D environments. Existing methods face a trad-off: online planners and controllers lack formal safety guarantees, while offline planners lack adaptability to changes in the number of agents or desired formation. To address this gap, we propose a hybrid architecture where a single leader tracks a pre-computed, safe trajectory, which serves as a shared trajectory backup set for all follower agents. Followers execute a nominal formation-keeping tracking controller, and are guaranteed to remain safe by always possessing a known-safe backup maneuver along the leader's path. We formally prove this method ensures collision avoidance with both static obstacles and other agents. The primary contributions are: (1) the multi-agent gatekeeper algorithm, which extends our single-agent gatekeeper framework to multi-agent systems; (2) the trajectory backup set for provably safe inter-agent coordination for leader-follower formation control; and (3) the first application of the gatekeeper framework in a 3D environment. We demonstrate our approach in a simulated 3D urban environment, where it achieved a 100% collision-avoidance success rate across 100 randomized trials, significantly outperforming baseline CBF and NMPC methods. Finally, we demonstrate the physical feasibility of the resulting trajectories on a team of quadcopters.

Page Count
13 pages

Category
Computer Science:
Robotics