Score: 2

An experimental study of existing tools for outlier detection and cleaning in trajectories

Published: November 25, 2025 | arXiv ID: 2511.20139v1

By: Mariana M Garcez Duarte, Mahmoud Sakr

Potential Business Impact:

Finds and removes bad data points in movement paths.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Outlier detection and cleaning are essential steps in data preprocessing to ensure the integrity and validity of data analyses. This paper focuses on outlier points within individual trajectories, i.e., points that deviate significantly inside a single trajectory. We experiment with ten open-source libraries to comprehensively evaluate available tools, comparing their efficiency and accuracy in identifying and cleaning outliers. This experiment considers the libraries as they are offered to end users, with real-world applicability. We compare existing outlier detection libraries, introduce a method for establishing ground-truth, and aim to guide users in choosing the most appropriate tool for their specific outlier detection needs. Furthermore, we survey the state-of-the-art algorithms for outlier detection and classify them into five types: Statistic-based methods, Sliding window algorithms, Clustering-based methods, Graph-based methods, and Heuristic-based methods. Our research provides insights into these libraries' performance and contributes to developing data preprocessing and outlier detection methodologies.

Country of Origin
🇧🇪 Belgium


Page Count
22 pages

Category
Computer Science:
Databases