Score: 0

FINE: Factorized multimodal sentiment analysis via mutual INformation Estimation

Published: November 25, 2025 | arXiv ID: 2511.20167v1

By: Yadong Liu, Shangfei Wang

Potential Business Impact:

Helps computers understand feelings from text and pictures.

Business Areas:
Text Analytics Data and Analytics, Software

Multimodal sentiment analysis remains a challenging task due to the inherent heterogeneity across modalities. Such heterogeneity often manifests as asynchronous signals, imbalanced information between modalities, and interference from task-irrelevant noise, hindering the learning of robust and accurate sentiment representations. To address these issues, we propose a factorized multimodal fusion framework that first disentangles each modality into shared and unique representations, and then suppresses task-irrelevant noise within both to retain only sentiment-critical representations. This fine-grained decomposition improves representation quality by reducing redundancy, prompting cross-modal complementarity, and isolating task-relevant sentiment cues. Rather than manipulating the feature space directly, we adopt a mutual information-based optimization strategy to guide the factorization process in a more stable and principled manner. To further support feature extraction and long-term temporal modeling, we introduce two auxiliary modules: a Mixture of Q-Formers, placed before factorization, which precedes the factorization and uses learnable queries to extract fine-grained affective features from multiple modalities, and a Dynamic Contrastive Queue, placed after factorization, which stores latest high-level representations for contrastive learning, enabling the model to capture long-range discriminative patterns and improve class-level separability. Extensive experiments on multiple public datasets demonstrate that our method consistently outperforms existing approaches, validating the effectiveness and robustness of the proposed framework.

Country of Origin
🇨🇳 China

Page Count
15 pages

Category
Computer Science:
Multimedia