Universe of Thoughts: Enabling Creative Reasoning with Large Language Models
By: Yuto Suzuki, Farnoush Banaei-Kashani
Potential Business Impact:
Helps computers invent new ideas, not just solve problems.
Reasoning based on Large Language Models (LLMs) has garnered increasing attention due to outstanding performance of these models in mathematical and complex logical tasks. Beginning with the Chain-of-Thought (CoT) prompting technique, numerous reasoning methods have emerged that decompose problems into smaller, sequential steps (or thoughts). However, existing reasoning models focus on conventional problem-solving and do not necessarily generate creative solutions by ``creative reasoning''. In domains where the solution space is expansive and conventional solutions are suboptimal, such as drug discovery or business strategization, creative reasoning to discover innovative solutions is crucial. To address this gap, first we introduce a computational framework for creative reasoning inspired by established cognitive science principles. With this framework, we propose three core creative reasoning paradigms, namely, \textit{combinational}, \textit{exploratory}, and \textit{transformative} reasoning, where each offers specific directions for systematic exploration of the universe of thoughts to generate creative solutions. Next, to materialize this framework using LLMs, we introduce the \textit{Universe of Thoughts} (or \textit{UoT}, for short), a novel set of methods to implement the aforementioned three creative processes. Finally, we introduce three novel tasks that necessitate creative problem-solving, along with an evaluation benchmark to assess creativity from three orthogonal perspectives: feasibility as constraint, and utility and novelty as metrics. With a comparative analysis against the state-of-the-art (SOTA) reasoning techniques as well as representative commercial models with reasoning capability, we show that UoT demonstrates superior performance in creative reasoning.
Similar Papers
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think step-by-step" to solve harder problems.
From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
Computation and Language
Helps AI "think" step-by-step to solve harder problems.
Algorithmic Thinking Theory
Artificial Intelligence
Makes AI smarter by letting it check its own answers.