Score: 0

Hybrid SIFT-SNN for Efficient Anomaly Detection of Traffic Flow-Control Infrastructure

Published: November 26, 2025 | arXiv ID: 2511.21337v1

By: Munish Rathee, Boris Bačić, Maryam Doborjeh

Potential Business Impact:

Finds bridge cracks instantly, saving lives.

Business Areas:
Image Recognition Data and Analytics, Software

This paper presents the SIFT-SNN framework, a low-latency neuromorphic signal-processing pipeline for real-time detection of structural anomalies in transport infrastructure. The proposed approach integrates Scale-Invariant Feature Transform (SIFT) for spatial feature encoding with a latency-driven spike conversion layer and a Leaky Integrate-and-Fire (LIF) Spiking Neural Network (SNN) for classification. The Auckland Harbour Bridge dataset is recorded under various weather and lighting conditions, comprising 6,000 labelled frames that include both real and synthetically augmented unsafe cases. The presented system achieves a classification accuracy of 92.3% (+- 0.8%) with a per-frame inference time of 9.5 ms. Achieved sub-10 millisecond latency, combined with sparse spike activity (8.1%), enables real-time, low-power edge deployment. Unlike conventional CNN-based approaches, the hybrid SIFT-SNN pipeline explicitly preserves spatial feature grounding, enhances interpretability, supports transparent decision-making, and operates efficiently on embedded hardware. Although synthetic augmentation improved robustness, generalisation to unseen field conditions remains to be validated. The SIFT-SNN framework is validated through a working prototype deployed on a consumer-grade system and framed as a generalisable case study in structural safety monitoring for movable concrete barriers, which, as a traffic flow-control infrastructure, is deployed in over 20 cities worldwide.

Country of Origin
🇳🇿 New Zealand

Page Count
8 pages

Category
Computer Science:
CV and Pattern Recognition