Score: 0

CTR Prediction on Alibaba's Taobao Advertising Dataset Using Traditional and Deep Learning Models

Published: November 26, 2025 | arXiv ID: 2511.21963v1

By: Hongyu Yang , Chunxi Wen , Jiyin Zhang and more

Potential Business Impact:

Shows ads people actually want to see.

Business Areas:
Personalization Commerce and Shopping

Click-through rates prediction is critical in modern advertising systems, where ranking relevance and user engagement directly impact platform efficiency and business value. In this project, we explore how to model CTR more effectively using a large-scale Taobao dataset released by Alibaba. We start with supervised learning models, including logistic regression and Light-GBM, that are trained on static features such as user demographics, ad attributes, and contextual metadata. These models provide fast, interpretable benchmarks, but have limited capabilities to capture patterns of behavior that drive clicks. To better model user intent, we combined behavioral data from hundreds of millions of interactions over a 22-day period. By extracting and encoding user action sequences, we construct representations of user interests over time. We use deep learning models to fuse behavioral embeddings with static features. Among them, multilayer perceptrons (MLPs) have achieved significant performance improvements. To capture temporal dynamics, we designed a Transformer-based architecture that uses a self-attention mechanism to learn contextual dependencies across behavioral sequences, modeling not only what the user interacts with, but also the timing and frequency of interactions. Transformer improves AUC by 2.81 % over the baseline (LR model), with the largest gains observed for users whose interests are diverse or change over time. In addition to modeling, we propose an A/B testing strategy for real-world evaluation. We also think about the broader implications: personalized ad targeting technology can be applied to public health scenarios to achieve precise delivery of health information or behavior guidance. Our research provides a roadmap for advancing click-through rate predictions and extending their value beyond e-commerce.

Page Count
16 pages

Category
Computer Science:
Machine Learning (CS)