Score: 3

Partially Shared Concept Bottleneck Models

Published: November 27, 2025 | arXiv ID: 2511.22170v1

By: Delong Zhao , Qiang Huang , Di Yan and more

Potential Business Impact:

Makes AI explain its decisions clearly and accurately.

Business Areas:
Image Recognition Data and Analytics, Software

Concept Bottleneck Models (CBMs) enhance interpretability by introducing a layer of human-understandable concepts between inputs and predictions. While recent methods automate concept generation using Large Language Models (LLMs) and Vision-Language Models (VLMs), they still face three fundamental challenges: poor visual grounding, concept redundancy, and the absence of principled metrics to balance predictive accuracy and concept compactness. We introduce PS-CBM, a Partially Shared CBM framework that addresses these limitations through three core components: (1) a multimodal concept generator that integrates LLM-derived semantics with exemplar-based visual cues; (2) a Partially Shared Concept Strategy that merges concepts based on activation patterns to balance specificity and compactness; and (3) Concept-Efficient Accuracy (CEA), a post-hoc metric that jointly captures both predictive accuracy and concept compactness. Extensive experiments on eleven diverse datasets show that PS-CBM consistently outperforms state-of-the-art CBMs, improving classification accuracy by 1.0%-7.4% and CEA by 2.0%-9.5%, while requiring significantly fewer concepts. These results underscore PS-CBM's effectiveness in achieving both high accuracy and strong interpretability.

Country of Origin
πŸ‡ΈπŸ‡¬ πŸ‡¨πŸ‡³ China, Singapore

Repos / Data Links

Page Count
14 pages

Category
Computer Science:
CV and Pattern Recognition