Score: 1

Controllable 3D Object Generation with Single Image Prompt

Published: November 27, 2025 | arXiv ID: 2511.22194v1

By: Jaeseok Lee, Jaekoo Lee

Potential Business Impact:

Creates 3D objects from pictures, not just words.

Business Areas:
Image Recognition Data and Analytics, Software

Recently, the impressive generative capabilities of diffusion models have been demonstrated, producing images with remarkable fidelity. Particularly, existing methods for the 3D object generation tasks, which is one of the fastest-growing segments in computer vision, pre-dominantly use text-to-image diffusion models with textual inversion which train a pseudo text prompt to describe the given image. In practice, various text-to-image generative models employ textual inversion to learn concepts or styles of target object in the pseudo text prompt embedding space, thereby generating sophisticated outputs. However, textual inversion requires additional training time and lacks control ability. To tackle this issues, we propose two innovative methods: (1) using an off-the-shelf image adapter that generates 3D objects without textual inversion, offering enhanced control over conditions such as depth, pose, and text. (2) a depth conditioned warmup strategy to enhance 3D consistency. In experimental results, ours show qualitatively and quantitatively comparable performance and improved 3D consistency to the existing text-inversion-based alternatives. Furthermore, we conduct a user study to assess (i) how well results match the input image and (ii) whether 3D consistency is maintained. User study results show that our model outperforms the alternatives, validating the effectiveness of our approaches. Our code is available at GitHub repository:https://github.com/Seooooooogi/Control3D_IP/

Country of Origin
🇰🇷 Korea, Republic of

Repos / Data Links

Page Count
17 pages

Category
Computer Science:
CV and Pattern Recognition