UAV-MM3D: A Large-Scale Synthetic Benchmark for 3D Perception of Unmanned Aerial Vehicles with Multi-Modal Data
By: Longkun Zou , Jiale Wang , Rongqin Liang and more
Potential Business Impact:
Creates realistic drone videos for training AI.
Accurate perception of UAVs in complex low-altitude environments is critical for airspace security and related intelligent systems. Developing reliable solutions requires large-scale, accurately annotated, and multimodal data. However, real-world UAV data collection faces inherent constraints due to airspace regulations, privacy concerns, and environmental variability, while manual annotation of 3D poses and cross-modal correspondences is time-consuming and costly. To overcome these challenges, we introduce UAV-MM3D, a high-fidelity multimodal synthetic dataset for low-altitude UAV perception and motion understanding. It comprises 400K synchronized frames across diverse scenes (urban areas, suburbs, forests, coastal regions) and weather conditions (clear, cloudy, rainy, foggy), featuring multiple UAV models (micro, small, medium-sized) and five modalities - RGB, IR, LiDAR, Radar, and DVS (Dynamic Vision Sensor). Each frame provides 2D/3D bounding boxes, 6-DoF poses, and instance-level annotations, enabling core tasks related to UAVs such as 3D detection, pose estimation, target tracking, and short-term trajectory forecasting. We further propose LGFusionNet, a LiDAR-guided multimodal fusion baseline, and a dedicated UAV trajectory prediction baseline to facilitate benchmarking. With its controllable simulation environment, comprehensive scenario coverage, and rich annotations, UAV3D offers a public benchmark for advancing 3D perception of UAVs.
Similar Papers
FlyAwareV2: A Multimodal Cross-Domain UAV Dataset for Urban Scene Understanding
CV and Pattern Recognition
Helps drones see cities better in all weather.
LAA3D: A Benchmark of Detecting and Tracking Low-Altitude Aircraft in 3D Space
CV and Pattern Recognition
Helps drones see and track other flying things.
ATR-UMMIM: A Benchmark Dataset for UAV-Based Multimodal Image Registration under Complex Imaging Conditions
CV and Pattern Recognition
Helps drones see objects better using different cameras.