GeoZero: Incentivizing Reasoning from Scratch on Geospatial Scenes
By: Di Wang , Shunyu Liu , Wentao Jiang and more
Potential Business Impact:
Teaches computers to understand maps without human help.
Multimodal large language models (MLLMs) have undergone rapid development in advancing geospatial scene understanding. Recent studies have sought to enhance the reasoning capabilities of remote sensing MLLMs, typically through cold-start training with elaborately curated chain-of-thought (CoT) data. However, this approach not only incurs substantial annotation costs but also introduces human biases that may limit the diversity of model reasoning. To address these challenges, we propose GeoZero, a framework that enables MLLMs to perform geospatial reasoning without any predefined CoT supervision. Specifically, we construct two datasets, GeoZero-Instruct and GeoZero-Hard. GeoZero-Instruct allows the model to acquire preliminary geospatial knowledge through supervised fine-tuning, while GeoZero-Hard stimulates deep reasoning during the subsequent reinforcement learning stage. Furthermore, we introduce Answer-Anchored Group Relative Policy Optimization (A$^2$GRPO), where the reasoning process is regularized by the model's own answers, encouraging diverse yet accurate thinking. Extensive experiments on multiple remote sensing vision-language benchmarks demonstrate that GeoZero not only surpasses existing state-of-the-art methods but also fosters universal emergent reasoning capabilities across diverse geospatial tasks. Code,data,and models will be publicly available at https://github.com/MiliLab/GeoZero.
Similar Papers
SpatialGeo:Boosting Spatial Reasoning in Multimodal LLMs via Geometry-Semantics Fusion
CV and Pattern Recognition
Helps computers understand 3D shapes and where things are.
Recognition through Reasoning: Reinforcing Image Geo-localization with Large Vision-Language Models
CV and Pattern Recognition
Helps computers find places from any picture.
GeoSR: Cognitive-Agentic Framework for Probing Geospatial Knowledge Boundaries via Iterative Self-Refinement
Artificial Intelligence
Makes maps smarter by using location rules.