GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels
By: Bhavya Sai Nukapotula , Rishabh Tripathi , Seth Pregler and more
Potential Business Impact:
Makes wireless signals faster and more reliable.
Channel state information (CSI) is essential for adaptive beamforming and maintaining robust links in wireless communication systems. However, acquiring CSI incurs significant overhead, consuming up to 25\% of spectrum resources in 5G networks due to frequent pilot transmissions at sub-millisecond intervals. Recent approaches aim to reduce this burden by reconstructing CSI from spatiotemporal RF measurements, such as signal strength and direction-of-arrival. While effective in offline settings, these methods often suffer from inference latencies in the 5--100~ms range, making them impractical for real-time systems. We present GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels, the first algorithm to break the 1 ms latency barrier while maintaining high accuracy. GSpaRC represents the RF environment using a compact set of 3D Gaussian primitives, each parameterized by a lightweight neural model augmented with physics-informed features such as distance-based attenuation. Unlike traditional vision-based splatting pipelines, GSpaRC is tailored for RF reception: it employs an equirectangular projection onto a hemispherical surface centered at the receiver to reflect omnidirectional antenna behavior. A custom CUDA pipeline enables fully parallelized directional sorting, splatting, and rendering across frequency and spatial dimensions. Evaluated on multiple RF datasets, GSpaRC achieves similar CSI reconstruction fidelity to recent state-of-the-art methods while reducing training and inference time by over an order of magnitude. By trading modest GPU computation for a substantial reduction in pilot overhead, GSpaRC enables scalable, low-latency channel estimation suitable for deployment in 5G and future wireless systems. The code is available here: \href{https://github.com/Nbhavyasai/GSpaRC-WirelessGaussianSplatting.git}{GSpaRC}.
Similar Papers
RF-PGS: Fully-structured Spatial Wireless Channel Representation with Planar Gaussian Splatting
CV and Pattern Recognition
Maps radio waves for faster wireless internet.
SkySplat: Generalizable 3D Gaussian Splatting from Multi-Temporal Sparse Satellite Images
CV and Pattern Recognition
Builds 3D maps from few satellite pictures.
Neural Gaussian Radio Fields for Channel Estimation
Signal Processing
Makes wireless signals faster and more reliable.