Score: 0

Obstruction reasoning for robotic grasping

Published: November 28, 2025 | arXiv ID: 2511.23186v1

By: Runyu Jiao , Matteo Bortolon , Francesco Giuliari and more

Potential Business Impact:

Robots learn to move things to grab hidden toys.

Business Areas:
Robotics Hardware, Science and Engineering, Software

Successful robotic grasping in cluttered environments not only requires a model to visually ground a target object but also to reason about obstructions that must be cleared beforehand. While current vision-language embodied reasoning models show emergent spatial understanding, they remain limited in terms of obstruction reasoning and accessibility planning. To bridge this gap, we present UNOGrasp, a learning-based vision-language model capable of performing visually-grounded obstruction reasoning to infer the sequence of actions needed to unobstruct the path and grasp the target object. We devise a novel multi-step reasoning process based on obstruction paths originated by the target object. We anchor each reasoning step with obstruction-aware visual cues to incentivize reasoning capability. UNOGrasp combines supervised and reinforcement finetuning through verifiable reasoning rewards. Moreover, we construct UNOBench, a large-scale dataset for both training and benchmarking, based on MetaGraspNetV2, with over 100k obstruction paths annotated by humans with obstruction ratios, contact points, and natural-language instructions. Extensive experiments and real-robot evaluations show that UNOGrasp significantly improves obstruction reasoning and grasp success across both synthetic and real-world environments, outperforming generalist and proprietary alternatives. Project website: https://tev-fbk.github.io/UnoGrasp/.

Page Count
28 pages

Category
Computer Science:
Robotics