Optimized Many-Hypercube Codes toward Lower Logical Error Rates and Earlier Realization
By: Hayato Goto
Potential Business Impact:
Makes quantum computers work better and sooner.
Many-hypercube codes [H. Goto, Sci. Adv. 10, eadp6388 (2024)], concatenated ${[[n,n-2,2]]}$ quantum error-detecting codes ($n$ is even), have recently been proposed as high-rate quantum codes suitable for fault-tolerant quantum computing. While the original many-hypercube codes with ${n=6}$ can achieve remarkably high encoding rates (about 30% and 20% at concatenation levels 3 and 4, respectively), they have large code block sizes at high levels (216 and 1296 physical qubits per block at levels 3 and 4, respectively), making not only experimental realization difficult but also logical error rates per block high. Toward earlier experimental realization and lower logical error rates, here we comprehensively investigate smaller many-hypercube codes with $[[6,4,2]]$ and/or $[[4,2,2]]$ codes, where, e.g., $D_{6,4,4}$ denotes the many-hypercube code using $[[6,4,2]]$ at level 1 and $[[4,2,2]]$ at levels 2 and 3. As a result, we found a notable fact that $D_{6,4,4}$ ($D_{6,6,4,4}$) can achieve lower block error rates than $D_{4,4,4}$ ($D_{4,4,4,4}$), despite its higher encoding rate. Focusing on level 3, we also developed efficient fault-tolerant encoders realizing about 60% overhead reduction while maintaining or even improving the performance, compared to the original design. Using them, we numerically confirmed that $D_{6,4,4}$ also achieves the best performance for logical controlled-NOT gates in a circuit-level noise model. These results will be useful for early experimental realization of fault-tolerant quantum computing with high-rate quantum codes.
Similar Papers
Optimized Many-Hypercube Codes toward Lower Logical Error Rates and Earlier Realization
Quantum Physics
Makes quantum computers work better with fewer errors.
Optimized Many-Hypercube Codes toward Lower Logical Error Rates and Earlier Realization
Quantum Physics
Makes quantum computers work better with fewer parts.
ConiQ: Enabling Concatenated Quantum Error Correction on Neutral Atom Arrays
Hardware Architecture
Makes quantum computers work better and faster.