Score: 2

Med-CMR: A Fine-Grained Benchmark Integrating Visual Evidence and Clinical Logic for Medical Complex Multimodal Reasoning

Published: November 30, 2025 | arXiv ID: 2512.00818v1

By: Haozhen Gong , Xiaozhong Ji , Yuansen Liu and more

Potential Business Impact:

Tests AI's ability to understand medical images and reason.

Business Areas:
Image Recognition Data and Analytics, Software

MLLMs MLLMs are beginning to appear in clinical workflows, but their ability to perform complex medical reasoning remains unclear. We present Med-CMR, a fine-grained Medical Complex Multimodal Reasoning benchmark. Med-CMR distinguishes from existing counterparts by three core features: 1) Systematic capability decomposition, splitting medical multimodal reasoning into fine-grained visual understanding and multi-step reasoning to enable targeted evaluation; 2) Challenging task design, with visual understanding across three key dimensions (small-object detection, fine-detail discrimination, spatial understanding) and reasoning covering four clinically relevant scenarios (temporal prediction, causal reasoning, long-tail generalization, multi-source integration); 3) Broad, high-quality data coverage, comprising 20,653 Visual Question Answering (VQA) pairs spanning 11 organ systems and 12 imaging modalities, validated via a rigorous two-stage (human expert + model-assisted) review to ensure clinical authenticity. We evaluate 18 state-of-the-art MLLMs with Med-CMR, revealing GPT-5 as the top-performing commercial model: 57.81 accuracy on multiple-choice questions (MCQs) and a 48.70 open-ended score, outperforming Gemini 2.5 Pro (49.87 MCQ accuracy, 45.98 open-ended score) and leading open-source model Qwen3-VL-235B-A22B (49.34 MCQ accuracy, 42.62 open-ended score). However, specialized medical MLLMs do not reliably outperform strong general models, and long-tail generalization emerges as the dominant failure mode. Med-CMR thus provides a stress test for visual-reasoning integration and rare-case robustness in medical MLLMs, and a rigorous yardstick for future clinical systems.

Repos / Data Links

Page Count
25 pages

Category
Computer Science:
Artificial Intelligence