Accelerating Streaming Video Large Language Models via Hierarchical Token Compression
By: Yiyu Wang , Xuyang Liu , Xiyan Gui and more
Potential Business Impact:
Makes videos play faster without losing quality.
Streaming Video Large Language Models (VideoLLMs) have demonstrated impressive performance across various video understanding tasks, but they face significant challenges in real-time deployment due to the high computational cost of processing dense visual tokens from continuous video streams. In streaming video scenarios, the primary bottleneck lies in the Vision Transformer (ViT) encoding stage, where redundant processing of temporally similar frames leads to inefficiency. Additionally, inflated token sequences during LLM pre-filling further exacerbate latency and memory overhead. To address these challenges, we propose \textbf{S}treaming \textbf{T}oken \textbf{C}ompression (\textbf{STC}), a plug-and-play hierarchical framework that seamlessly integrates into existing streaming VideoLLMs, optimizing both ViT encoding and LLM pre-filling stages to accelerate processing. STC introduces two token-level accelerators: \textbf{STC-Cacher}, which reduces ViT encoding overhead by caching and reusing features from temporally similar frames, and \textbf{STC-Pruner}, which compresses the visual token sequence before it enters the LLM, preserving only the most salient tokens based on both spatial and temporal relevance. Extensive experiments on four baseline streaming VideoLLMs across five benchmarks demonstrate that STC outperforms other compression methods. Notably, STC retains up to \textbf{99\%} of accuracy on the ReKV framework while reducing ViT encoding latency and LLM pre-filling latency by \textbf{24.5\%} and \textbf{45.3\%}.
Similar Papers
StreamingTOM: Streaming Token Compression for Efficient Video Understanding
CV and Pattern Recognition
Makes computers understand videos faster and cheaper.
Towards Lossless Ultimate Vision Token Compression for VLMs
CV and Pattern Recognition
Makes AI understand pictures much faster.
Less Is More, but Where? Dynamic Token Compression via LLM-Guided Keyframe Prior
CV and Pattern Recognition
Makes watching long videos faster for computers.