Score: 0

The 4/$δ$ Bound: Designing Predictable LLM-Verifier Systems for Formal Method Guarantee

Published: November 30, 2025 | arXiv ID: 2512.02080v2

By: PIerre Dantas , Lucas Cordeiro , Youcheng Sun and more

Potential Business Impact:

Makes computer code safer and more reliable.

Business Areas:
Simulation Software

The integration of Formal Verification tools with Large Language Models (LLMs) offers a path to scale software verification beyond manual workflows. However, current methods remain unreliable: without a solid theoretical footing, the refinement process acts as a black box that may oscillate, loop, or diverge. This work bridges this critical gap by developing an LLM-Verifier Convergence Theorem, providing the first formal framework with provable guarantees for termination in multi-stage verification pipelines. We model the interaction not as a generic loop, but as a sequential absorbing Markov Chain comprising four essential engineering stages: \texttt{CodeGen}, \texttt{Compilation}, \texttt{InvariantSynth}, and \texttt{SMTSolving}. We prove that for any non-zero stage success probability ($δ> 0$), the system reaches the \texttt{Verified} state almost surely. Furthermore, because of the sequential nature of the pipeline, we derive a precise latency bound of $\mathbb{E}[n] \leq 4/δ$. We stress-tested this prediction in an extensive empirical campaign comprising over 90,000 trials. The results match the theory with striking consistency: every run reached verification, and the empirical convergence factor clustered tightly around $C_f\approx 1.0$, confirming that the $4/δ$ bound accurately mirrors system behavior rather than serving as a loose buffer. Based on this data, we identify three distinct operating zones -- marginal, practical, and high-performance -- and propose a dynamic calibration strategy to handle parameter drift in real-world environments. Together, these contributions replace heuristic guesswork with a rigorous architectural foundation, enabling predictable resource planning and performance budgeting for safety-critical software.

Country of Origin
🇬🇧 United Kingdom

Page Count
36 pages

Category
Computer Science:
Artificial Intelligence