Score: 0

Opening the Black Box: Nowcasting Singapore's GDP Growth and its Explainability

Published: December 1, 2025 | arXiv ID: 2512.02092v1

By: Luca Attolico

Potential Business Impact:

Predicts country's economy growth faster and more accurately.

Business Areas:
Predictive Analytics Artificial Intelligence, Data and Analytics, Software

Timely assessment of current conditions is essential especially for small, open economies such as Singapore, where external shocks transmit rapidly to domestic activity. We develop a real-time nowcasting framework for quarterly GDP growth using a high-dimensional panel of approximately 70 indicators, encompassing economic and financial indicators over 1990Q1-2023Q2. The analysis covers penalized regressions, dimensionality-reduction methods, ensemble learning algorithms, and neural architectures, benchmarked against a Random Walk, an AR(3), and a Dynamic Factor Model. The pipeline preserves temporal ordering through an expanding-window walk-forward design with Bayesian hyperparameter optimization, and uses moving block-bootstrap procedures both to construct prediction intervals and to obtain confidence bands for feature-importance measures. It adopts model-specific and XAI-based explainability tools. A Model Confidence Set procedure identifies statistically superior learners, which are then combined through simple, weighted, and exponentially weighted schemes; the resulting time-varying weights provide an interpretable representation of model contributions. Predictive ability is assessed via Giacomini-White tests. Empirical results show that penalized regressions, dimensionality-reduction models, and GRU networks consistently outperform all benchmarks, with RMSFE reductions of roughly 40-60%; aggregation delivers further gains. Feature-attribution methods highlight industrial production, external trade, and labor-market indicators as dominant drivers of Singapore's short-run growth dynamics.

Page Count
189 pages

Category
Economics:
Econometrics