Limitations of Membership Queries in Testable Learning
By: Jane Lange, Mingda Qiao
Potential Business Impact:
Makes learning faster, but not *too* much faster.
Membership queries (MQ) often yield speedups for learning tasks, particularly in the distribution-specific setting. We show that in the \emph{testable learning} model of Rubinfeld and Vasilyan [RV23], membership queries cannot decrease the time complexity of testable learning algorithms beyond the complexity of sample-only distribution-specific learning. In the testable learning model, the learner must output a hypothesis whenever the data distribution satisfies a desired property, and if it outputs a hypothesis, the hypothesis must be near-optimal. We give a general reduction from sample-based \emph{refutation} of boolean concept classes, as presented in [Vadhan17, KL18], to testable learning with queries (TL-Q). This yields lower bounds for TL-Q via the reduction from learning to refutation given in [KL18]. The result is that, relative to a concept class and a distribution family, no $m$-sample TL-Q algorithm can be super-polynomially more time-efficient than the best $m$-sample PAC learner. Finally, we define a class of ``statistical'' MQ algorithms that encompasses many known distribution-specific MQ learners, such as those based on influence estimation or subcube-conditional statistical queries. We show that TL-Q algorithms in this class imply efficient statistical-query refutation and learning algorithms. Thus, combined with known SQ dimension lower bounds, our results imply that these efficient membership query learners cannot be made testable.
Similar Papers
Computational Complexity in Property Testing
Computational Complexity
Makes computers check data faster than before.
Computational Complexity in Property Testing
Computational Complexity
Makes computer tests run faster or slower.
Approximate Optimal Active Learning of Decision Trees
Logic in Computer Science
Teaches computers to learn rules faster.