Score: 2

Generative Multi-modal Feedback for Singing Voice Synthesis Evaluation

Published: December 2, 2025 | arXiv ID: 2512.02523v1

By: Xueyan Li , Yuxin Wang , Mengjie Jiang and more

Potential Business Impact:

Helps computers judge singing better with words.

Business Areas:
Speech Recognition Data and Analytics, Software

Singing voice synthesis (SVS) has advanced significantly, enabling models to generate vocals with accurate pitch and consistent style. As these capabilities improve, the need for reliable evaluation and optimization becomes increasingly critical. However, current methods like reward systems often rely on single numerical scores, struggle to capture various dimensions such as phrasing or expressiveness, and require costly annotations, limiting interpretability and generalization. To address these issues, we propose a generative feedback (i.e., reward model) framework that provides multi-dimensional language and audio feedback for SVS assessment. Our approach leverages an audio-language model to generate text and audio critiques-covering aspects such as melody, content, and auditory quality. The model is fine-tuned on a hybrid dataset combining human music reactions and synthetic critiques from a MLLMs, enhancing diversity and linguistic richness. Quantitative experiments validate the effectiveness of the proposed dataset and training strategy, demonstrating that the framework produces musically accurate and interpretable evaluations suitable for guiding generative model improvement. The code is at [https://github.com/opendilab/VocalCritic](https://github.com/opendilab/VocalCritic)

Country of Origin
πŸ‡¨πŸ‡³ πŸ‡ΊπŸ‡Έ China, United States

Repos / Data Links

Page Count
16 pages

Category
Computer Science:
Sound