Score: 2

Watermarks for Embeddings-as-a-Service Large Language Models

Published: November 28, 2025 | arXiv ID: 2512.03079v1

By: Anudeex Shetty

Potential Business Impact:

Protects AI text tools from being copied.

Business Areas:
Text Analytics Data and Analytics, Software

Large Language Models (LLMs) have demonstrated exceptional capabilities in natural language understanding and generation. Based on these LLMs, businesses have started to provide Embeddings-as-a-Service (EaaS), offering feature extraction capabilities (in the form of text embeddings) that benefit downstream natural language processing tasks. However, prior research has demonstrated that EaaS is vulnerable to imitation attacks, where an attacker clones the service's model in a black-box manner without access to the model's internal workings. In response, watermarks have been added to the text embeddings to protect the intellectual property of EaaS providers by allowing them to check for model ownership. This thesis focuses on defending against imitation attacks by investigating EaaS watermarks. To achieve this goal, we unveil novel attacks and propose and validate new watermarking techniques. Firstly, we show that existing EaaS watermarks can be removed through paraphrasing the input text when attackers clone the model during imitation attacks. Our study illustrates that paraphrasing can effectively bypass current state-of-the-art EaaS watermarks across various attack setups (including different paraphrasing techniques and models) and datasets in most instances. This demonstrates a new vulnerability in recent EaaS watermarking techniques. Subsequently, as a countermeasure, we propose a novel watermarking technique, WET (Watermarking EaaS with Linear Transformation), which employs linear transformation of the embeddings. Watermark verification is conducted by applying a reverse transformation and comparing the similarity between recovered and original embeddings. We demonstrate its robustness against paraphrasing attacks with near-perfect verifiability. We conduct detailed ablation studies to assess the significance of each component and hyperparameter in WET.

Repos / Data Links

Page Count
145 pages

Category
Computer Science:
Computation and Language