Score: 2

Accelerating shape optimization by deep neural networks with on-the-fly determined architecture

Published: December 3, 2025 | arXiv ID: 2512.03555v2

By: Lucie Kubíčková , Onřej Gebouský , Jan Haidl and more

Potential Business Impact:

Makes designs faster by learning from tests.

Business Areas:
Simulation Software

In component shape optimization, the component properties are often evaluated by computationally expensive simulations. Such optimization becomes unfeasible when it is focused on a global search requiring thousands of simulations to be evaluated. Here, we present a viable global shape optimization methodology based on multi-objective evolutionary algorithms accelerated by deep neural networks (DNNs). Our methodology alternates between evaluating simulations and utilizing the generated data to train DNNs with various architectures. When a suitable DNN architecture is identified, the DNN replaces the simulation in the rest of the global search. Our methodology was tested on five ZDT benchmark functions, showing itself at the level of and sometimes more flexible than other state-of-the-art acceleration approaches. Then, it was applied to a real-life optimization problem, namely the shape optimization of a single-phase ejector. Compared with a non-accelerated methodology, ours was able to save weeks of CPU time in solving this problem. To experimentally confirm the performance of the optimized ejector shapes, four of them were 3D printed and tested on the lab scale confirming the predicted performance. This suggests that our methodology could be used for acceleration of other real-life shape optimization problems.

Repos / Data Links

Page Count
60 pages

Category
Computer Science:
Computational Engineering, Finance, and Science