Score: 1

DisentangleFormer: Spatial-Channel Decoupling for Multi-Channel Vision

Published: December 3, 2025 | arXiv ID: 2512.04314v1

By: Jiashu Liao , Pietro Liò , Marc de Kamps and more

Potential Business Impact:

Helps computers see different parts of images separately.

Business Areas:
Image Recognition Data and Analytics, Software

Vision Transformers face a fundamental limitation: standard self-attention jointly processes spatial and channel dimensions, leading to entangled representations that prevent independent modeling of structural and semantic dependencies. This problem is especially pronounced in hyperspectral imaging, from satellite hyperspectral remote sensing to infrared pathology imaging, where channels capture distinct biophysical or biochemical cues. We propose DisentangleFormer, an architecture that achieves robust multi-channel vision representation through principled spatial-channel decoupling. Motivated by information-theoretic principles of decorrelated representation learning, our parallel design enables independent modeling of structural and semantic cues while minimizing redundancy between spatial and channel streams. Our design integrates three core components: (1) Parallel Disentanglement: Independently processes spatial-token and channel-token streams, enabling decorrelated feature learning across spatial and spectral dimensions, (2) Squeezed Token Enhancer: An adaptive calibration module that dynamically fuses spatial and channel streams, and (3) Multi-Scale FFN: complementing global attention with multi-scale local context to capture fine-grained structural and semantic dependencies. Extensive experiments on hyperspectral benchmarks demonstrate that DisentangleFormer achieves state-of-the-art performance, consistently outperforming existing models on Indian Pine, Pavia University, and Houston, the large-scale BigEarthNet remote sensing dataset, as well as an infrared pathology dataset. Moreover, it retains competitive accuracy on ImageNet while reducing computational cost by 17.8% in FLOPs. The code will be made publicly available upon acceptance.

Country of Origin
🇬🇧 United Kingdom

Page Count
10 pages

Category
Computer Science:
CV and Pattern Recognition