GovBench: Benchmarking LLM Agents for Real-World Data Governance Workflows
By: Zhou Liu , Zhaoyang Han , Guochen Yan and more
Potential Business Impact:
Helps AI fix messy data for better results.
Data governance ensures data quality, security, and compliance through policies and standards, a critical foundation for scaling modern AI development. Recently, large language models (LLMs) have emerged as a promising solution for automating data governance by translating user intent into executable transformation code. However, existing benchmarks for automated data science often emphasize snippet-level coding or high-level analytics, failing to capture the unique challenge of data governance: ensuring the correctness and quality of the data itself. To bridge this gap, we introduce GovBench, a benchmark featuring 150 diverse tasks grounded in real-world scenarios, built on data from actual cases. GovBench employs a novel "reversed-objective" methodology to synthesize realistic noise and utilizes rigorous metrics to assess end-to-end pipeline reliability. Our analysis on GovBench reveals that current models struggle with complex, multi-step workflows and lack robust error-correction mechanisms. Consequently, we propose DataGovAgent, a framework utilizing a Planner-Executor-Evaluator architecture that integrates constraint-based planning, retrieval-augmented generation, and sandboxed feedback-driven debugging. Experimental results show that DataGovAgent significantly boosts the Average Task Score (ATS) on complex tasks from 39.7 to 54.9 and reduces debugging iterations by over 77.9 percent compared to general-purpose baselines.
Similar Papers
InnovatorBench: Evaluating Agents' Ability to Conduct Innovative LLM Research
Artificial Intelligence
Tests AI's ability to do real science research.
InnovatorBench: Evaluating Agents' Ability to Conduct Innovative LLM Research
Artificial Intelligence
Tests AI to help scientists discover new things faster.
Finance Agent Benchmark: Benchmarking LLMs on Real-world Financial Research Tasks
Computational Engineering, Finance, and Science
Tests AI on real money problems, finds big gaps