Score: 2

OmniScaleSR: Unleashing Scale-Controlled Diffusion Prior for Faithful and Realistic Arbitrary-Scale Image Super-Resolution

Published: December 4, 2025 | arXiv ID: 2512.04699v1

By: Xinning Chai , Zhengxue Cheng , Yuhong Zhang and more

Potential Business Impact:

Makes blurry pictures sharp at any zoom.

Business Areas:
Augmented Reality Hardware, Software

Arbitrary-scale super-resolution (ASSR) overcomes the limitation of traditional super-resolution (SR) methods that operate only at fixed scales (e.g., 4x), enabling a single model to handle arbitrary magnification. Most existing ASSR approaches rely on implicit neural representation (INR), but its regression-driven feature extraction and aggregation intrinsically limit the ability to synthesize fine details, leading to low realism. Recent diffusion-based realistic image super-resolution (Real-ISR) models leverage powerful pre-trained diffusion priors and show impressive results at the 4x setting. We observe that they can also achieve ASSR because the diffusion prior implicitly adapts to scale by encouraging high-realism generation. However, without explicit scale control, the diffusion process cannot be properly adjusted for different magnification levels, resulting in excessive hallucination or blurry outputs, especially under ultra-high scales. To address these issues, we propose OmniScaleSR, a diffusion-based realistic arbitrary-scale SR framework designed to achieve both high fidelity and high realism. We introduce explicit, diffusion-native scale control mechanisms that work synergistically with implicit scale adaptation, enabling scale-aware and content-aware modulation of the diffusion process. In addition, we incorporate multi-domain fidelity enhancement designs to further improve reconstruction accuracy. Extensive experiments on bicubic degradation benchmarks and real-world datasets show that OmniScaleSR surpasses state-of-the-art methods in both fidelity and perceptual realism, with particularly strong performance at large magnification factors. Code will be released at https://github.com/chaixinning/OmniScaleSR.

Country of Origin
🇨🇳 China

Repos / Data Links

Page Count
15 pages

Category
Computer Science:
CV and Pattern Recognition