Score: 0

Meta-Learning for Quantum Optimization via Quantum Sequence Model

Published: December 4, 2025 | arXiv ID: 2512.05058v1

By: Yu-Cheng Lin, Yu-Chao Hsu, Samuel Yen-Chi Chen

Potential Business Impact:

Teaches computers to find best answers faster.

Business Areas:
Quantum Computing Science and Engineering

The Quantum Approximate Optimization Algorithm (QAOA) is a leading approach for solving combinatorial optimization problems on near-term quantum processors. However, finding good variational parameters remains a significant challenge due to the non-convex energy landscape, often resulting in slow convergence and poor solution quality. In this work, we propose a quantum meta-learning framework that trains advanced quantum sequence models to generate effective parameter initialization policies. We investigate four classical or quantum sequence models, including the Quantum Kernel-based Long Short-Term Memory (QK-LSTM), as learned optimizers in a "learning to learn" paradigm. Our numerical experiments on the Max-Cut problem demonstrate that the QK-LSTM optimizer achieves superior performance, obtaining the highest approximation ratios and exhibiting the fastest convergence rate across all tested problem sizes (n=10 to 13). Crucially, the QK-LSTM model achieves perfect parameter transferability by synthesizing a single, fixed set of near-optimal parameters, leading to a remarkable sustained acceleration of convergence even when generalizing to larger problems. This capability, enabled by the compact and expressive power of the quantum kernel architecture, underscores its effectiveness. The QK-LSTM, with only 43 trainable parameters, substantially outperforms the classical LSTM (56 parameters) and other quantum sequence models, establishing a robust pathway toward highly efficient parameter initialization for variational quantum algorithms in the NISQ era.

Page Count
8 pages

Category
Physics:
Quantum Physics