Score: 0

How to Tame Your LLM: Semantic Collapse in Continuous Systems

Published: December 4, 2025 | arXiv ID: 2512.05162v1

By: C. M. Wyss

Potential Business Impact:

Makes AI understand meaning like a brain.

Business Areas:
Semantic Web Internet Services

We develop a general theory of semantic dynamics for large language models by formalizing them as Continuous State Machines (CSMs): smooth dynamical systems whose latent manifolds evolve under probabilistic transition operators. The associated transfer operator $P: L^2(M,μ) \to L^2(M,μ)$ encodes the propagation of semantic mass. Under mild regularity assumptions (compactness, ergodicity, bounded Jacobian), $P$ is compact with discrete spectrum. Within this setting, we prove the Semantic Characterization Theorem (SCT): the leading eigenfunctions of $P$ induce finitely many spectral basins of invariant meaning, each definable in an o-minimal structure over $\mathbb{R}$. Thus spectral lumpability and logical tameness coincide. This explains how discrete symbolic semantics can emerge from continuous computation: the continuous activation manifold collapses into a finite, logically interpretable ontology. We further extend the SCT to stochastic and adiabatic (time-inhomogeneous) settings, showing that slowly drifting kernels preserve compactness, spectral coherence, and basin structure.

Page Count
35 pages

Category
Statistics:
Machine Learning (Stat)