Score: 0

XR-DT: Extended Reality-Enhanced Digital Twin for Agentic Mobile Robots

Published: December 4, 2025 | arXiv ID: 2512.05270v1

By: Tianyi Wang , Jiseop Byeon , Ahmad Yehia and more

As mobile robots increasingly operate alongside humans in shared workspaces, ensuring safe, efficient, and interpretable Human-Robot Interaction (HRI) has become a pressing challenge. While substantial progress has been devoted to human behavior prediction, limited attention has been paid to how humans perceive, interpret, and trust robots' inferences, impeding deployment in safety-critical and socially embedded environments. This paper presents XR-DT, an eXtended Reality-enhanced Digital Twin framework for agentic mobile robots, that bridges physical and virtual spaces to enable bi-directional understanding between humans and robots. Our hierarchical XR-DT architecture integrates virtual-, augmented-, and mixed-reality layers, fusing real-time sensor data, simulated environments in the Unity game engine, and human feedback captured through wearable AR devices. Within this framework, we design an agentic mobile robot system with a unified diffusion policy for context-aware task adaptation. We further propose a chain-of-thought prompting mechanism that allows multimodal large language models to reason over human instructions and environmental context, while leveraging an AutoGen-based multi-agent coordination layer to enhance robustness and collaboration in dynamic tasks. Initial experimental results demonstrate accurate human and robot trajectory prediction, validating the XR-DT framework's effectiveness in HRI tasks. By embedding human intention, environmental dynamics, and robot cognition into the XR-DT framework, our system enables interpretable, trustworthy, and adaptive HRI.

Category
Computer Science:
Robotics