Score: 0

Computing Supported Models via Transformation to Stable Models

Published: December 5, 2025 | arXiv ID: 2512.05437v1

By: Fang Li, Gopal Gupta

Answer Set Programming (ASP) with stable model semantics has proven highly effective for knowledge representation and reasoning. However, the minimality requirement of stable models can be restrictive for applications requiring exploration of non-minimal but logically consistent solution spaces. Supported models, introduced by Apt, Blair, and Walker in 1988, relax this minimality constraint while maintaining a support condition ensuring every true atom is justified by some rule. Despite their theoretical significance, supported models lack practical computational tools integrated with modern ASP solvers. We present a novel transformation-based method enabling computation of supported models using standard ASP infrastructure. Our approach transforms any ground logic program into an equivalent program whose stable models correspond exactly to the supported models of the original program. We implement this transformation for Clingo, providing the first practical tool for computing supported models with state-of-the-art ASP solvers. We demonstrate applications in software verification, medical diagnosis, and planning where supported models enable valuable exploratory reasoning capabilities beyond those provided by stable models. We also provide an empirical evaluation to justify the practical utility of our approach compared to established methods. Our implementation is publicly available and compatible with standard ASP syntax.

Category
Computer Science:
Logic in Computer Science