Score: 0

On the Theoretical Foundation of Sparse Dictionary Learning in Mechanistic Interpretability

Published: December 5, 2025 | arXiv ID: 2512.05534v1

By: Yiming Tang , Harshvardhan Saini , Yizhen Liao and more

As AI models achieve remarkable capabilities across diverse domains, understanding what representations they learn and how they process information has become increasingly important for both scientific progress and trustworthy deployment. Recent works in mechanistic interpretability have shown that neural networks represent meaningful concepts as directions in their representation spaces and often encode many concepts in superposition. Various sparse dictionary learning (SDL) methods, including sparse autoencoders, transcoders, and crosscoders, address this by training auxiliary models with sparsity constraints to disentangle these superposed concepts into interpretable features. These methods have demonstrated remarkable empirical success but have limited theoretical understanding. Existing theoretical work is limited to sparse autoencoders with tied-weight constraints, leaving the broader family of SDL methods without formal grounding. In this work, we develop the first unified theoretical framework considering SDL as one unified optimization problem. We demonstrate how diverse methods instantiate the theoretical framwork and provide rigorous analysis on the optimization landscape. We provide the first theoretical explanations for some empirically observed phenomena, including feature absorption, dead neurons, and the neuron resampling technique. We further design controlled experiments to validate our theoretical results.

Category
Computer Science:
Machine Learning (CS)