Score: 0

On Sparse Representations of 3-Manifolds

Published: December 5, 2025 | arXiv ID: 2512.05779v1

By: Kristóf Huszár, Clément Maria

Potential Business Impact:

Makes complex shapes easier to understand and calculate.

Business Areas:
3D Printing Manufacturing

3-manifolds are commonly represented as triangulations, consisting of abstract tetrahedra whose triangular faces are identified in pairs. The combinatorial sparsity of a triangulation, as measured by the treewidth of its dual graph, plays a fundamental role in the design of parameterized algorithms. In this work, we investigate algorithmic procedures that transform or modify a given triangulation while controlling specific sparsity parameters. First, we describe a linear-time algorithm that converts a given triangulation into a Heegaard diagram of the underlying 3-manifold, showing that the construction preserves treewidth. We apply this construction to exhibit a fixed-parameter tractable framework for computing Kuperberg's quantum invariants of 3-manifolds. Second, we present a quasi-linear-time algorithm that retriangulates a given triangulation into one with maximum edge valence of at most nine, while only moderately increasing the treewidth of the dual graph. Combining these two algorithms yields a quasi-linear-time algorithm that produces, from a given triangulation, a Heegaard diagram in which every attaching curve intersects at most nine others.

Page Count
24 pages

Category
Computer Science:
Computational Geometry