Score: 0

Multimodal Oncology Agent for IDH1 Mutation Prediction in Low-Grade Glioma

Published: December 5, 2025 | arXiv ID: 2512.05824v1

By: Hafsa Akebli , Adam Shephard , Vincenzo Della Mea and more

Low-grade gliomas frequently present IDH1 mutations that define clinically distinct subgroups with specific prognostic and therapeutic implications. This work introduces a Multimodal Oncology Agent (MOA) integrating a histology tool based on the TITAN foundation model for IDH1 mutation prediction in low-grade glioma, combined with reasoning over structured clinical and genomic inputs through PubMed, Google Search, and OncoKB. MOA reports were quantitatively evaluated on 488 patients from the TCGA-LGG cohort against clinical and histology baselines. MOA without the histology tool outperformed the clinical baseline, achieving an F1-score of 0.826 compared to 0.798. When fused with histology features, MOA reached the highest performance with an F1-score of 0.912, exceeding both the histology baseline at 0.894 and the fused histology-clinical baseline at 0.897. These results demonstrate that the proposed agent captures complementary mutation-relevant information enriched through external biomedical sources, enabling accurate IDH1 mutation prediction.

Category
Computer Science:
Artificial Intelligence