Score: 2

Variational Quantum Rainbow Deep Q-Network for Optimizing Resource Allocation Problem

Published: December 5, 2025 | arXiv ID: 2512.05946v1

By: Truong Thanh Hung Nguyen, Truong Thinh Nguyen, Hung Cao

Potential Business Impact:

Quantum computers help assign people to jobs faster.

Business Areas:
Quantum Computing Science and Engineering

Resource allocation remains NP-hard due to combinatorial complexity. While deep reinforcement learning (DRL) methods, such as the Rainbow Deep Q-Network (DQN), improve scalability through prioritized replay and distributional heads, classical function approximators limit their representational power. We introduce Variational Quantum Rainbow DQN (VQR-DQN), which integrates ring-topology variational quantum circuits with Rainbow DQN to leverage quantum superposition and entanglement. We frame the human resource allocation problem (HRAP) as a Markov decision process (MDP) with combinatorial action spaces based on officer capabilities, event schedules, and transition times. On four HRAP benchmarks, VQR-DQN achieves 26.8% normalized makespan reduction versus random baselines and outperforms Double DQN and classical Rainbow DQN by 4.9-13.4%. These gains align with theoretical connections between circuit expressibility, entanglement, and policy quality, demonstrating the potential of quantum-enhanced DRL for large-scale resource allocation. Our implementation is available at: https://github.com/Analytics-Everywhere-Lab/qtrl/.

Country of Origin
🇨🇦 🇻🇳 Canada, Viet Nam

Repos / Data Links

Page Count
8 pages

Category
Computer Science:
Artificial Intelligence