Sift or Get Off the PoC: Applying Information Retrieval to Vulnerability Research with SiftRank
By: Caleb Gross
Potential Business Impact:
Finds computer security flaws faster and cheaper.
Security research is fundamentally a problem of resource constraint and consequent prioritization. There is simply too much attack surface and too little time and energy to spend analyzing it all. The most effective security researchers are often those who are most skilled at intuitively deciding which part of an expansive attack surface to investigate. We demonstrate that this problem of selecting the most promising option from among many possibilities can be reframed as an information retrieval problem, and solved using document ranking techniques with LLMs performing the heavy lifting as general-purpose rankers. We present SiftRank, a ranking algorithm achieving O(n) complexity through three key mechanisms: listwise ranking using an LLM to order documents in small batches of approximately 10 items at a time; inflection-based convergence detection that adaptively terminates ranking when score distributions have stabilized; and iterative refinement that progressively focuses ranking effort on the most relevant documents. Unlike existing reranking approaches that require a separate first-stage retrieval step to narrow datasets to approximately 100 candidates, SiftRank operates directly on thousands of items, with each document evaluated across multiple randomized batches to mitigate inconsistent judgments by an LLM. We demonstrate practical effectiveness on N-day vulnerability analysis, successfully identifying a vulnerability-fixing function among 2,197 changed functions in a stripped binary firmware patch within 99 seconds at an inference cost of $0.82. Our approach enables scalable security prioritization for problems that are generally constrained by manual analysis, requiring only standard LLM API access without specialized infrastructure, embedding, or domain-specific fine-tuning. An open-source implementation of SiftRank may be found at https://github.com/noperator/siftrank.
Similar Papers
LimRank: Less is More for Reasoning-Intensive Information Reranking
Computation and Language
Teaches computers to rank information better, faster.
Evaluating Position Bias in Large Language Model Recommendations
Information Retrieval
Fixes computer suggestions so order doesn't matter.
Basic model for ranking microfinance institutions
Information Retrieval
Helps websites show you the best deals.